sábado, 31 de outubro de 2009

O Velho Flutuador de Guerra - Ponte M4T6


quinta-feira, 29 de outubro de 2009

LMCS Capabilities: Offloading Military Vessels and Possible Disaster Applications







LMCS Capabilities: Offloading Military Vessels and Possible Disaster Applications

Mouseover image to magnify
An LMCS is deployed off the MG Charles P. Gross LSV-5 during a September 2008 demonstration in Oahu. The demonstration showed the capability and versatility of the LMCS, its rapid deployment and retrieval, and use of the system with real traffic. (Photo courtesy of ERDC.)

The Lightweight Modular Causeway System (LMCS) is answering the challenge for a lightweight, easily transportable, and deployable system to facilitate equipment movement from new U.S. Army and U.S. Navy vessels into theater where ports may be inadequate or damaged. LMCS is also providing future capabilities for wet gap crossings for military operations and disaster response.

DOD has had a requirement for vessels to conduct autonomous offloading operations at austere sites—locations without world-class port infrastructure—for years. However, the current Army causeway system does not fit the rapidly deployable force projection requirements of our armed services. It is heavy and requires large, slow, deep-draft vessels with cranes to deploy; tugs are required to assist emplacement; and extensive time (1 day) and manpower (more than 100 Soldiers) are needed to operationally deploy.

ERDC conceived, designed, manufactured, shore tested, installed, and ship tested the LMCS emplacement and recovery apparatus in just 6 months.

The LMCS, being developed by the U.S. Army Engineer Research and Development Center (ERDC), is a floating, rapidly deployed causeway that is being designed specifically to be transported and deployed by the Army’s and Navy’s new Joint High-Speed Vessels (JHSVs). LMCS is also readily adaptable for many smaller vessels, such as the Logistics Support Vessel (LSV). The LMCS is also being designed for air transport and emplacement (helicopter) as well as ground transport and emplacement from land, if necessary, using material handling equipment or similar assets.

The LMCS was developed under the Joint Enable Theater Access-Sea Ports of Debarkation (JETA-SPOD) Advanced Concept Technology Demonstration (ACTD), which began in 2006. The LMCS research team not only featured experts from ERDC in Vicksburg, MS, but also contractor support from some of the top names in industry: Alion Science and Technology, Booz Allen Hamilton, Demaree Inflatable Boats, Oceaneering International Inc., and Quantum Engineering Design Inc. For its efforts, the LMCS program received the Defense Logistics 2008 Award for Technology Implementation of the Year.

Mouseover image to magnify
Pictured is a concept image of external airlift of one LMCS section by helicopter. (Photo courtesy of ERDC.)
InnovationsThe new LMCS represents many groundbreaking capabilities and advances. It only weighs about 3 tons per 10-foot module, emplacement requires one rigid hull inflatable boat, and it was recently shown that as few as seven Soldiers can deploy 120 feet of the system in about 3 hours. In its unladen state, the LMCS requires less than 12 inches of water depth and is capable of Military Load Class 70 (main battle tank) traffic. With its minimal operational requirements, the LMCS will be functional as an organic theater early entry asset.
Many innovations were applied to the system. ERDC conceived, designed, manufactured, shore tested, installed, and ship tested the LMCS emplacement and recovery apparatus in just 6 months. To minimize weight, after exploring the application of existing 350-pound steel cylinders to inflate the LMCS flotation, engineers used carbon-fiber spun compressed gas cylinders developed for the paintball industry and firefighting equipment, which weigh only 40 pounds.

A critical core technology for the LMCS was the development of a new double compressive joint based on high durometer urethane elastomers that provide dependable repetitive compliance with minimal fatigue. These joints, using materials similar to those used to buffer building motions during earthquakes, help the LMCS support the large weight requirements of the M1A2 main battle tank and are key elements of LMCS durability. (Scale model tests indicate that the unladen LMCS should be survivable in 20 foot waves.) Improvements are being made to the elastomer connection to increase versatility and ease of emplacement.

CompatibilityWhile being developed to support the expanded capabilities of the new JHSV, the LMCS is designed to be compatible with other existing U.S. Army, Navy, and Marine Corps watercraft. “The LMCS will enhance the capabilities of the JHSV. This vessel represents a big step forward in the military’s ability to access smaller ports around the world, primarily because of its significantly reduced draft and abilities to operate and maneuver at higher speeds,” stated Dr. Jimmy E. Fowler, Associate Technical Director in ERDC’s Coastal and Hydraulics Laboratory. “The LMCS is being designed so that it can be transported and deployed from the vessel in situations where pierside depth at an existing port is insufficient.”

Highly successful demonstrations of the full-scale LMCS were conducted in June 2008 at Fort Eustis, VA, and in September 2008 at Oahu, HI. An LSV was used as the marine platform, and the LMCS successfully supported traffic by both military and commercial vehicles. The versatility of the LMCS was also shown at a bare beach site during the Fort Eustis demonstration. By partially deflating some of the pneumatic tubes on the shoreward side of the LMCS, the small deployment crew was able to increase the penetration of the causeway onto the shore. This capability also allows the LMCS to conform to existing bottom slope on the beach and limits extensive beach or shore preparation requirements.

This vessel represents a big step forward in the military’s ability to access smaller ports around the world, primarily because of its significantly reduced draft and abilities to operate and maneuver at higher speeds.

The ACTD in Hawaii was supported by the U.S. Pacific Command (PACOM) through its role as the operational manager. “The LMCS is a perfect example of a successful JCTD [Joint Capabilities Technology Demonstration],” stated MG Stephen Tom, PACOM Chief of Staff, during the demonstration. “Through hard work, dedication, and persistence in overcoming technical and financial challenges, a combined military and civilian team of engineers, watercraft experts, causeway operators, and program managers has delivered a new capability.” The prototype LMCS will be retained by PACOM during the next 2 years for use in the Pacific theater during the extended user evaluation phase. Transition of LMCS to the field forces could occur as early as FY12, which is also the planned widespread fielding of the JHSVs.

The LMCS capabilities are also being enhanced by the companion JETA-SPOD Analysis Tool (JSAT), developed by ERDC to help select port sites and analyze and improve throughput at various sites. JSAT assists with characterization of port sites by building data sets of potential ports or sites, analyzing port operational capacity, and developing a model to support site selection. The small port decision support tool model in JSAT provides a traffic characterization model that models and estimates throughput, identifies bottlenecks, and recommends improvements.

CapabilitiesThe LMCS, coupled with the new JHSVs, will give our armed forces unmatched force projection and sustainment capabilities in coastal environments and austere port areas that previously could not be used for operations. Like many military technologies, these same systems also have great potential for humanitarian assistance and disaster relief operations in areas damaged by hurricanes, tsunamis, other severe weather events, or even earthquakes.

Mouseover image to magnify
At a bare beach demonstration at Fort Eustis in June 2008, an LMCS is deployed off Anzio Beach with material handling equipment. (Photo courtesy of ERDC.)

“Although the LMCS was developed primarily for military applications, it also has great potential to be used in support of [Department of] Homeland Security [DHS] efforts,” said Dr. Donald T. Resio, Technical Director, JETA-SPOD ACTD. “It is anticipated that the LMCS could be used to provide a rapidly delivered and emplaced temporary floating bridge. Such a system could have played a strong role in rapidly restoring traffic flow in areas where bridges were destroyed in recent hurricanes, such as Ivan, Katrina, and Ike.”

PACOM recently obtained Air Transportability Certification of the LMCS on both the C-5 and C-17 Air Force transport aircraft. Future demonstrations will be conducted in Hawaii this year, in Alaska in spring 2010, and at a site to be determined in late 2010. These demonstrations will show the mudflat/wet gap crossing capabilities of the LMCS for both military and civilian operations to the U.S. Army Maneuver Support Center, Northern Command, DHS, Federal Emergency Management Agency, as well as other agencies or potential users of this new technology. Helicopter emplacement of the LMCS is tentatively planned for the Alaska demonstration, contingent on the availability of appropriate resources.

Medium Floating Bridge (MFB) - Canadá


The Medium Floating Bridge (MFB) is used to provide a hasty means of transportation across water obstacles. It can also be configured as a ferry, in which case it is referred to as the Medium Raft (MR).
The system is a reverse engineered design of the Russian PMP steel floating fold-bridge and was designed and built in Germany. The floating bridge bays are each comprised of two road-way and two bow pontoons which are hinged and can be locked in the folded or floating position. Each bay is transported by a specialized called the Medium Floating Bridge Transporter / Dismountable Flat Rack System (MFBT/DFRS). These 6x6 trucks are equipped with special bridge adapter pallets (BAP) and are configured to transport, launch and recover the bays.

To construct a floating bridge or ferry, several of the interior bays and / or ramp bays are connected together (depending on the desired length and configuration). A boat called the Boat, Bridge Erection, or BBE, is always deployed with the Medium Folding Bridge. This boat is equipped with twin Stardec V-8, 300 horsepower engines, and is used to assemble / disassemble the bridge / raft components on the water. The BBE is also designed to be transported and launched using the specialized MFBT/DFRS 6x6 HLVW trucks.

Medium Floating Bridge Specifications:
Interior Bay
Dimensions:
Interior Bay Length: 6.7m
Road-way Width: 4.1 m
Total width including Bow pontoons: 8.12 m
Ramp Bay
Dimensions:
Ramp Bay Length: 5.6 m
Road-way Width: 4.1 m
Total width including Bow pontoons: 8.12 m
Boat, Bridge Erection Specifications:
Length: 7.4 m
Width: 3.3 m
Weight: 5172kg
Hull: Welded aluminum
Crew: 1
Engines: Twin Turbo STARDEC 300 V-8, 330 HP each

Handbuch Brücke

On Line: www.books.google.com

Type: Manual do Pontoneiro

Pontier Manual

On Line: www.books.google.com

Type: Manual do Pontoneiro

Bridgeman Manual

On Line: www.books.google.com

Type: Manual do Pontoneiro

Manuale dal Pontiere On Line

Manuale dal Pontiere

On Line: http://books.google.com

Digitare: Manual do Pontoneiro

2º Batalhão de Engenharia de Combate

2º BECmb - O Batalhão Borba Gato


Sessenta anos já são passados daquele 15 de maio de 1946, quando a assinatura do decreto reservado nº 21.134-A determinou a criação do 2º Batalhão de Engenharia de Combate.
A pacata Princesa do Norte experimentava ainda contentamento e orgulho pela volta de seus filhos que tinham ido pelejar na Itália, na 2ª Guerra Mundial, quando o 2º BE Cmb iniciou sua laboriosa permanência em solo pindamonhangabense.

Dados históricos revelam que o 2º BE se originou do 5º Batalhão de Engenheiros que surgiu em 1908, em Cáceres/MT, e fora comandado pelo memorável marechal Rondon, Cândido Maria-no da Silva Rondon.
Em 1919, essa unidade passou a ser denominada de 2º Batalhão de Engenharia e foi transferida para a capital do Estado de São Paulo. De lá cogitou-se sua transferência para Pindamonhan-gaba no ano de 1932. Por contingências da época, isso não foi possível. Somente 15 anos depois ocorreu sua instalação neste município, com a chegada de seus primeiros oficiais e praças, em 11 de março de 1947.

Seu primeiro contingente constituiu-se de soldados oriundos de Lorena, São Paulo e de 97 conscritos de Pinda. A primeira incorporação ocorreu no dia 19 de março de 1947, marcando o início das atividades do Batalhão sob o comando do tenente-coronel Felisberto Esteves de Oliveira Batista.

Antes de serem ocupadas pelo 2º BE, as dependências deste quartel abrigaram outras unidades do Exército. O prédio havia sido construído para ser ocupado pelo Mercado Municipal, sendo adaptado para aquartelar o 2º Corpo de Trem (1914/1919). Com a transferência dessa unidade para Pirassununga, passou a ser sede de outras unidades, nesta seqüência: 2ª Cia de Transmissões (1930/1932), 12º Regimento de Cavalaria Independente (1932/1939), 2º Batalhão do 5º Regimento de Infantaria (até 1943), 1ª Companhia do 2º Batalhão do 6º Regimento de Infantaria (1943/1945), 2º Batalhão de Carros de Combate Leve e, em 1947, 2º BE Cmb.

A área ocupada pelo 2º BE, incluindo a praça defronte e ruas do local são, na verdade, guardiãs de parte mais significativa no que no que diz respeito à história de Pinda. Ali se erigiu a primeira igreja da então freguesia e futura vila que daria origem à cidade de Pindamonhangaba. Isso ocorreu no século XVII e a capela ficava com a frente voltada para onde depois se edificou a igreja matriz, o atual Santuário Mariano Nossa Senhora do Bom Sucesso.

Em 1877, quando Pinda recebeu os imperadores Pedro II e sua esposa dona Tereza Cristina, eles ficaram hospedados no palacete do visconde Francisco Marcondes Homem de Mello. Esse palacete ficava na Bicudo Leme, em frente à atual praça Padre João de Faria Fialho, a praça do Quartel. Na época o logradouro chamava-se largo da Princesa Imperial, em homenagem à princesa Isabel.
O 2º BE Cmb é composto por três companhias – a de Engenharia e Combate, a de Pontes e a de Comando e Apoio – e uma base administrativa. Dispõe de três áreas distintas, onde se encontram instalados o aquartelamento (frente à praça Padre João de Faria Fialho), Depósito de Material de Pontes (às margens do rio Paraíba) e a Vila Militar (entre os bairros Tabaú e Santana).

Seu contingente militar é constituído de oficiais (de carreira e temporários) da Arma de Engenharia; de oficiais dos serviços de Saúde, Intendência e Material Bélico; do quadro de praças, composto por subtenentes e sargentos (de carreira e temporários) de diversas qualificações, e de cabos e soldados oriundos de Pinda e municípios vizinhos.

Em termos de materiais o batalhão dispõe de equipamentos básicos de terraplenagem; de meios de transposição de água, tais como: equipagens flutuantes de pontes (ponte Ribbon Bridge e Uniflote, passadeira de alumínio, portada tática leve) e de ponte fixa Bailey, além de outros equipamentos e acessórios utilizados em diversas fases da transposição de um curso d’água. Possui também frota de veículos e outros equipamentos.

Nas atividades de cooperação de instrução o batalhão tem sido atuante junto às escolas de formação de oficiais e de sargentos (Academia Militar de Agulhas Negras, Escola de Aperfeiçoamento de Oficiais, Centro de Preparação de Oficiais da Reserva, Núcleos de Preparação de Oficiais da Reserva, Escola de Sargentos das Armas) e, em especial, com as unidades instaladas no Vale do Paraíba.

A missão do 2º BE não se limita à instrução e ao adestramento da tropa, a unidade também presta assistência social comunitária aos municípios. Nos casos de calamidade pública as ações do Batalhão são imprescindíveis, apoiando com material e pessoal na montagem de pontes provisórias, desobstrução de estradas quando ocorrem deslizamentos de terra, etc.

Alguns dos episódios mais marcantes envolvendo a participação do 2º BE Cmb em situações calamitosas foram:
• Em 1965, operação de construção de ponte de emergência para substituir a ponte Engenheiro Noronha (levada pela enchente) sobre o rio Pelotas, na região de Passo do Socorro, divisa com Santa Catarina;
• Em 1967, quando o município de Caraguatatuba, devido às enchentes, ficou isolado por via terrestre. O 2º BE promoveu o tratamento e distribuição de água para consumo, restabeleceu a ligação daquela localidade com São Sebastião, construindo ponte de cavaletes sobre o Rio Santo Antônio, distribuiu gêneros de primeira necessidade e prestou apoio em material explosivo na desobstrução de passagens;
• Em 1965, com a construção de ponte sobre o rio Fortuna, no Km 153 da rodovia São José dos Campos-Paraibuna, evitou isolamento das cidades de Ubatuba, Caraguatatuba, São Sebastião e Ilha Bela;
• 1983, a instalação de uma portada sobre o rio Paraíba para substituir, em situação de emergência, a ponte da Sapucaia, em Pindamonhan-gaba;
• Atividades de apoio e socorro foram prestadas mais recentemente em Campos do Jordão – no desabamento de encostas; em Limeira – montagem de ponte para restauração do trânsito no distrito industrial daquele município; Aparecida – apoio no deslizamento de encostas.

O 2º BE Cmb é subordinado diretamente à 2ª Divisão de Exército sediada na capital paulista.

The Mabey Logistic Support Bridge - Inglaterra


The Mabey Logistic Support Bridge (in the United States, the Mabey-Johnson Bridge) is a portable pre-fabricated truss bridge, designed for use by military engineering units to upgrade routes for heavier traffic, replace damaged civilian bridges, replace assault and general support bridges and to provide a long span floating bridge capability. The bridge is a variant of that Mabey Compact 200 bridge, with alterations made to suit the military user as well as a ramp system that will provides ground clearance to civilian and military vehicles.


Description
US Army Mabey Logistic Support Bridge Iraq
The Logistic Support Bridge is a non-assault bridge for the movement of supplies and the re-opening of communications. The Logistic Support Bridge is a comparatively low cost system that can be used widely throughout the support area, as well as for a range of defined applications. All types of vehicles including civilian vehicles with low ground clearances are accommodated.
The Mabey Logistic Support Bridge originated from the Bailey bridge concept. Compared with World War II material in use throughout the world, LSB is manufactured with chosen modern steel grades. As with all Mabey & Johnson bridging, the LSB has a strong steel deck system. With strong deep transoms, there are only two per bay instead of the four previously needed on Bailey.
Beyond the need for the re-opening of communications, Logistic Support Bridge based equipment (Compact 200) can be used as a rescue bridge for relief in natural disaster situations or as a civilian bridge for semi permanent bridging to open up communications in some of the most remote regions of the world.


Users
The bridge is manufactured by Mabey & Johnson Ltd, England. The name LSB was given by the British Army (Royal Engineers) to supply bridging to satisfy their specific requirements for a logistic or line of communication bridging. The LSB went into service with the British Army on 21 December 2001. The system is proved and approved by a number of NATO forces.
Armies from a number of countries around the world own equipment or have trained and deployed on the system, notably during the crisis in the Balkans. These Armies include Argentina, Austria, Belgium, Brazil, Bulgaria, Cambodia, Canada, Chile, Denmark, Ecuador, Finland, France, Germany, Greece, Hungary, Italy, Malaysia, Nepal, Netherlands, Romania, Sri Lanka, Slovakia, Slovenia, Spain, Sweden, Switzerland, Tanzania, Turkey, Venezuela, United Kingdom, United States.
The bridge has been built in many locations across Iraq by the U.S. Naval Mobile Construction Battalions (Seabees) and the U.S. Army Corps of Engineers.


Features
The bridge takes military load class 80 Tracked, 110 Wheeled
The bridge can span up to 61m
LSB has a lane width of 4.2m
Multi-span equipment enables the bridge to be built to any length on fixed or floating supports
Built on a greenfield site using grillages, ground beams and ramps
The bridge is normally built using a 22ton capacity crane or HyEx with an eye attachment on the bucket


System description
Intermediate span being floated into position on intermediate piers
Anchor systems with hand winches
Landing Spans launched from the home and far banks

Completed float bridge
The LSB combines standard off the shelf equipment with a range of purpose designed special equipment to meet the expectations of modern military loads and traffic expectations.
Panels —These are the main structural components of the bridge trusses. They are welded items comprising top and bottom chords interconnected by vertical and diagonal bracing. At the end of each panel, chords terminate in male lugs or eyes and at the other end in female lugs or eyes. This allows panels to be pinned together to form the bridge span. There are two different panels; a Super Panel and a High Shear Super Panel. The High Shear Super Panel is used at each end of the bridge span depending upon the loading criteria.
Chord reinforcement —These are constructed in the same way as the chords of the bridge panels and are bolted to the panels to increase the bending capacity of the bridge. For the LSB a heavy chord reinforcement is used.
Transoms —These are fabricated from universal beams and form the cross girders of the bridge, spanning between the panels and carrying the bridge deck. The transom is designed for the appropriate loading criteria and for LSB is designed to accommodate MLC80T/110W.
Decks —Unlike wooden Bailey decks, the steel LSB decks are 1.05m x 3.05m and are manufactured using robotic welding technology. The decks are manufactured to have a long fatigue life and with durbar/checkered plate finish. The decks withstand both wheeled and tracked vehicles.
Bracing —A variety of bracing members are used to connect panels to form the bridge trusses and to brace adjacent transoms to the bridge.
Grillages and Ground Beams —On greenfield sites and when being used as an over bridge, ground beams are available that form an assembly which transmits all dead and live forces from the bridge into the ground. For a 40m (MLC80T/110W) bridge the ground bearing pressure is 200kN/m2. The grillages are located on the top of the ground beams and accommodate the bridge bearings as well as the head of the ramp transom.
Ramps —The slope or profile of the ramps can be adjusted to allow for the passage of a range of civilian and military traffic. The length of a standard ramp at each end of the bridge is 13.5m. The ramps are bolted to the grillages and use standard deck units supported on special transoms. These transoms can be positioned at a variety of heights depending upon the set adopted with a special ramp post. The interface between the ramp and ground is a special toe ramp unit (1.5m)


Construction
The bridge can be constructed by the cantilever launch method without the need for any temporary intermediate support. This is achieved by erecting a temporary launching nose at the front of the bridge and pushing the bridge over the gap on rollers.
After pushing the bridge over the gap, the launching nose is dismantled and the bridge is jacked down onto its bearings. The launching nose is largely constructed from standard bridge components.


Floating variants
There are a number of floating versions of the Mabey LSB in use across Iraq: Floating Piers which consist of steel Flexifloat pontoon units, Landing Piers consisting of 16 pontoon units, and Intermediate Piers which consist of 8 pontoons each. Hand winches are mounted on steel trays which are bolted to the pontoons. The anchors are connected to the hand winches and pontoons via steel chain and polypropylene ropes. Special span junction decks allow for the rotation of the floating spans as the spans deflect under live load.
If the bridge is relatively short in terms of the number of spans, it may be possible to launch the complete bridge from one bank. On a long span bridge, launching intermediate spans and floating them into position on intermediate piers is more practical.

2º Batalhão de Engenharia de Combate


Adestramento da 1ª Companhia de Engenharia de Combate Paraquedista no 2º BECmb.

Cacunaca Operation - Brazilian Army


German Pontoon Set - Second World War


quarta-feira, 28 de outubro de 2009

Chinese Bridging


GZQ-230 Pontoon Bridge System - China

GZQ-230 Pontoon Bridge System

The GZQ-230 heavy pontoon bridge is a second-generation Chinese floating bridge modelled on the Soviet pontoon bridge equipment. It is mounted on a XC-2200 5 ton truck chassis also developed in China.

The heavy pontoon bridge system has a maximum load capacity of 60 tons. If the maximum configuration is exercised the GZQ-230 can be capable of being connected to 14 other pontoon bridge systems or motor boats or a combination in order to span up to 312 m.

Status
The GZQ-230 pontoon bridge system is in service with the Bangladesh Army.

TECHNICAL SPECIFICATIONS

Origin: China
Type: Heavy Pontoon Bridge System
Weight: 11 tonnes
Length: 9.422 m
Width: 2.500 m
Height: 3.200 m
Crew: 1 + 2
Engine: BF8L413FG air-cooled diesel 252hp
Payload: 8-9 tons
Service: Bangladesh Army

Type 79 Pontoon Bridge - China


The Type 79 Ribbon Bridge was developed from the Russian Federation PMP Heavy Folding Pontoon Bridge and the United States Ribbon Bridge.

Figures supplied for the Type 79 state that when a pontoon bridge is constructed across a river flowing at 2.5 m/s, a 50,000 kg capacity bridge 6.5 m wide and 312 m long can be erected. A 20,000 kg capacity bridge under similar circumstances can be 3.2 m wide and 527 m long. Construction of a floating bridge with a capacity of up to 110,000 kg takes 15 minutes. Figures for the later Type 79-A Ribbon Bridge quote a capacity of 60,000 kg. The Type 79-A Ribbon Bridge is carried and launched from a Tiema XC2200 6 × 6 truck.

Status
The Type 79 pontoon bridge system is in service with the Bangladesh Army.

Engenharia de Salvamento - Suiça


Mission des troupes de sauvetage
Diverses armes peuvent être engagées dans le cadre de l’aide en cas de catastrophe. Les connaissances et les moyens spéciaux prédestinent tout particulièrement les troupes de sauvetage à agir dans l’aide en cas de catastrophe.L’aide en cas de catastrophe à l’étranger est une partie du soutien à l’aide humanitaire. Elle est accordée de ce fait dans le contexte de la mission de l’armée en faveur de la promotion de la paix et de la gestion des crises.L’aide militaire en cas de catastrophe, dans le contexte de la coopération nationale de sécurité, comprend en premier lieu les engagements suivants :

Missions des troupes de sauvetage
Engagement de sauvetage en situation difficile et en cas de catastrophe étendue
Engagement de sauvetage lors de grands incendies
Engagement d'aide aux populations menacées et isolées par des événements naturels
Prévention de l'extension du secteur touché par la catastrophe et les dommages consécutifs
Remise en fonction provisoire des infrastructures d'importance vitale

Formation d’application du génie et du sauvetage - Engenheiro de Salvamento - Suiça


La situation actuelle de la menace nous confronte plus souvent avec des catastrophes naturelles ou dues à facteurs de civilisation. Le nombre des engagements directs des troupes du génie et de sauvetage, à titre de prestations d’aide et d’appui en faveur des autorités civiles, augmente. Nous sommes prêts : que ce soit avec l’assortiment des interventions dans les décombres et transport d’eau, avec la construction de ponts, avec des machines lourdes ou encore avec de plongeurs prêts à l’engagement et des prestations d’ingénierie. En plus, des formations du génie assurent avec du matériel moderne la mobilité des formations de combat.
La compagnie de canots à moteur, par exemple, fournit des contributions en faveur du Corps des gardes-frontière, de la police et de la Sécurité militaire. Les troupes du génie et de sauvetage ont renforcé leur position au sein de l’armée et face à la population.
La coopération avec les pays voisins a permis une consolidation des connaissances et des possibilités des troupes de génie et de sauvetage. Elle a aussi souligné l’actualité du matériel et de la troupe. Ceci démontre une chose : Nous sommes prêts. Dans les pages qui suivent, nous souhaitons fournir un aperçu des tâches des troupes du génie et de sauvetage, deux armes sur lesquelles vous pouvez compter en permanence et desquelles nous sommes extrêmement fiers.

segunda-feira, 26 de outubro de 2009

Adestramento com Viaduto e Bailey Uniflote no 3º Batalhão de Engenharia de Combate

A 3ª Companhia de Engenharia de Combate do 3º Batalhão de Engenharia de Combate, subunidade que possui como marca a "Coruja", realizou pela primeira vez no Brasil o lançamento de um viaduto apoiado numa Ponte Bailey Uniflote. O Comandante da Companhia, Tenente Pazetto (AMAN/2005), após meses de dedicação e planejamento conseguiu colocar em prática o tão maravilhoso projeto - ímpar no Exército Brasileiro. É um exemplo as demais organizações de engenharia de combate.

Adestramento de assalto anfíbio na Amazônia


sexta-feira, 23 de outubro de 2009

Mabey Universal Bridge - Mabey & Johnson - Inglaterra

Mabey Universal is supplied to road authorities or contractors as a product for stock, resale or for hire equipment. On construction sites, the Mabey Universal system can provide access for heavy construction traffic.

The Mabey Universal Bridging system has proved successful in a wide variety of applications. Its heavy-duty modular design provides a unique combination of strength and versatility. It has been designed to have excellent fatigue resistance, which makes the Mabey Universal system ideal as a long-term solution for heavily trafficked roads.

The speed of erection, ease of assembly and reusability of the Mabey Universal Bridge makes it ideal for use in temporary and emergency situations.

Single, two or three lane roadway widths
Clear spans to 81m
International highway design loadings
Axle loadings up to 60 tonnes
Fully tested, pre-engineered modular design
Fully galvanized for low maintenance
Building the Mabey Universal Bridge
The Mabey Universal Bridge system design enables fast build times to be achieved. Typically the bridge is assembled using a small crew of 5 to 8 men working with a light mobile crane and standard tools. Mabey offer full engineering and site support.
The panel is the basic unit from which the main bridge girders are formed. The Mabey Universal panel is longer and stronger than any other of its type, thus allowing a more rigid structure to be constructed with fewer components. The effective bending moment capacity of the truss is increased by introducing reinforcement chords bolted top and bottom of the panel.
For greater spans and heavier loadings, the introduction of further panel lines increases both bending and shear capacity of the bridge.

quinta-feira, 22 de outubro de 2009

Mabey & Johnson Bridging


On the banks of the mighty Tigris River, a track excavator slowly inched forward, pushing a land-based on ramp towards a pontoon suspension bridge.

Simple pins, connecting the two, marked the Aug. 31 completion of a spectacular engineering effort from three separate engineer entities that took a month to complete.

Engineers of the 225th Engineer Brigade, the 555th Engineer Brigade and elements of the Headquarters, 4th and 5th Iraqi Army Field Engineer Regiments have literally bridged the gap while spanning the river to reduce traffic inside of Baghdad in accordance with the Security Agreement.

On July 27, the 277th Engineer Company, 46th Engineer Combat Battalion (Heavy), 225th Eng. Bde., began the massive job of removing 6,000 cubic yards of dirt to level both banks of the river for the bridge’s on and off ramps. Using the Army’s largest bulldozer, the D9, San Antonio-based engineers moved some 400 dump truck loads worth of dirt in only 23 days.

“The 277th Eng. Company’s scope of work was to construct the near side and far side approach and the boat launch sites. This was done with a variety of engineer operations of cutting and filling; loading and hauling and grading, leveling and compacting,” said plans officer, Maj. Shane Rauh, of Baton Rouge, La.

Next, Soldiers of the 555th Engineer Brigade assembled the ramps of the Maybe Johnson Bridge and launched the portion of bridge suspended by pontoons over the Tigris.

The final phase of the engineer tri-fecta was a company sized element from the Iraqi army Field Engineer Regiments. The partnership was not only great training for the emplacement of the actual bridge, but allowed the U.S. Soldiers to show the Iraqis how to maintain the bridge once U.S. troops withdraw from Iraq.

“The big significance here is this is my first time that I know of … that we’ve actually built a bridge alongside the Iraqi brethren and the Iraqi Engineers. It’s a huge significance because we’ve got [three] regiments out here worth of people helping us out to build this bridge,” Capt. John Davis of Virginia Beach, Va., commander of the 50th Multi-Role Bridge Company explained.

“We were able to train them in the past on the Maybe Johnson on how to do the emplacement and maneuver of these bridges and to get them out here on site and to get them building and all come together, there’s just a lot of national pride out here,” he said.

For the 50th MRBC, working with the Maybe Johnson was not a first, but suspending the bridge with pontoons to make a sort of floating bridge was a first that allowed for a rare training opportunity.

“This is a non-standard bridge. This is something we bought and are using based on operational needs in Iraq right now,” Davis continued. “So this is great for them to get training and get experience to carry on to the next generation of Army [bridge builders].”

“This is a Maybe Johnson Combat 200 version. It is capable of pretty much crossing any kind of traffic the military has right now. It will enable the units in this area to have freedom of maneuver … to keep the fight progressing,” said Davis.

Marcha fluvial para o combate


quarta-feira, 21 de outubro de 2009

Emprego de botes pneumáticos pela Engenharia Brasileira no Haiti


3º Batalhão de Engenharia de Combate - Brasil

O 3º Batalhão de Engenharia de Combate (3º BECmb) tem suas origens no 3º Batalhão de Engenharia, criado em 26 de dezembro de 1917, na cidade de São Gabriel (RS). O Batalhão ocupou, provisoriamente, instalações localizadas em uma colina que demandava à margem esquerda do rio Vacaria, na rua Duque de Caxias. Foi nessa colina histórica, que o Marechal Luís Alves de Lima e Silva armou tendas das Forças Imperiais, na Guerra dos Farrapos.

Em abril de 1922, teve início a construção da atual sede do Batalhão.

O 3º Batalhão de Engenharia de Combate, "Batalhão Conrado Bittencourt", tem como sua sede o município de Cachoeira do Sul (RS). Está diretamente subordinado ao Comando Militar do Sul.

A Unidade é composta por três Companhias de Engenharia de Combate, sendo uma de pronto emprego; além de uma Companhia de Engenharia de Pontes e uma Companhia de Comando e Serviço.

O Batalhão possui em seu interior quatro apartamentos e alojamentos destinados a militares em trânsito na guarnição ou a militares participantes de estágios ou cursos, e conta, também, Próprios Nacionais Residênciais nas vilas militares.

O 3º BECmb possui o encargo de adestrar uma subunidade de pronto emprego para eventuais missões de paz de que o Brasil venha a participar e que requeiram o uso de uma tropa de Engenharia nos trabalhos de desminagem, construção de pontes, reparos de estradas, entre outros.

O Batalhão é dotado de um material de pontagem bem diversificado, para as mais variadas pontes da Engenharia do Exército Brasileiro, tais como a equipagem M4T6, Bailey, Bailey Uniflote, Fita, Compact 200, Passadeira e Ribon Bridge.

Apóia inúmeros estágios, para cadetes da Academia Militar das Agulhas Negras (AMAN); para oficiais alunos da Escola de Aperfeiçoamento de Oficiais (EsAO); e para alunos do Centro de Preparação de Oficiais da Reserva (CPOR), da Escola de Sargentos das Armas (EsSA) e do Curso de Aperfeiçoamento de Sargentos/Engenharia.

Cumprindo um amplo leque de atribuições cuja dimensão espelha o braço forte e a mão amiga de nosso Exército, o 3º Batalhão de Engenharia de Combate muito se orgulha do respeito e da credibilidade que defruta no Rio Grande do Sul. O reconhecimento da comunidade e a confiança do escalão superior e de algumas das nossas principais escolas militares servem-lhe de alento para manter-se no caminho que vem trilhando há mais de 80 anos.

Endereço: Rua Marques Ribeiro, s/n
Bairro: Marques Ribeiro
Cidade: Cachoeira do Sul
UF: RS
CEP: 96508-160

domingo, 18 de outubro de 2009

PONTES MILITARES - MILITARY BRIDGING

Brazilian site specialized in military bridges and bridging. Your comments are welcome. Sito brasiliano specializzato in ponti militari e pontieri. I vostri commenti sono benvenuti. Sitio brasileño especializado en puentes militares. Sus comentarios son bienvenidos.Brasilianischen Seite auf die militärische Brücken und Überbrückungsgeld. Ihre Bemerkungen sind willkommen.Site brésilien spécialisé dans les ponts et les passerelles militaire. Vos commentaires sont les bienvenus.

Beschäftigung Ribbon Bridge System


sábado, 17 de outubro de 2009

quinta-feira, 8 de outubro de 2009

Militares participam de Curso Especial de Embarcações


12º BECmb - Bridge Stage


Estágio de Construção de Pontes M4T6, ministrado pelo 12º Batalhão de Engenharia de Combate Blindado. O documento denominado "Pontes Fixas M4T6", disponível on line e gratuitamente no http://www.books.google.com/ aborda o referido assunto de forma simples e prática.

6º BECmb conducted training maneuvers force


6ª Batalhão de Engenharia de Combate realiza adestramento com material de pontes para o CPOR/PA


Em setembro de 2009, o 6º Batalhão de Engenharia de Combate (6º BE Cmb) recebeu a visita dos alunos do Curso de Engenharia do Centro Preparatório de Oficiais da Reserva de Porto Alegre (CPOR/PA). A visita teve como finalidade capacitar os alunos do CPOR/PA a empregar as técnicas de construção e operação dos materiais de pontagem existente na Organização Militar de Engenharia de Combate.

12º Batalhão de Engenharia de Combate Blindado realiza embarque ferroviário de blindados




O 12º Batalhão de Engenharia de Combate Blindado (12º BE Cmb Bld) realizou atividade de embarque e desembarque ferroviário de Viatura Blindada de Transporte de Pessoal, junto a rede ferroviária da América Latina Logística. Foi utilizado como rampa o material de ponte fixa de cavalete da equipagem da Ponte M4T6, adquirido na década de 1970 dos Estados Unidos da América.

quarta-feira, 7 de outubro de 2009

Queda de ponte na China deixa sete mortos



O colapso de uma ponte em construção na província de Zhejiang, na China, deixou ao menos sete mortos.
Segundo a agência de notícias AP, a estrutura metálica que caiu fazia parte da construção de uma linha de trem. Diversas casas foram atingidas e equipes de resgate tiraram ao menos 10 pessoas dos escombros.

Queda de Ponte na China - Sichuan


Queda de ponte deixa três mortos na China
Acidente ocorreu na província de Sichuan. Doze pessoas se feriram e um caminhão ficou pendurado.

Queda de Ponte na China - 29 mortos


Pelo menos 29 operários morreram após a queda de uma ponte em construção no centro da China, em um momento em que o Governo investiga mais de 6 mil pontes em todo o país devido a seu estado perigoso.


A queda aconteceu na província de Hunan. No momento do acidente havia pelo menos 123 operários trabalhando sobre e sob a ponte, dos quais 86 foram resgatados e 22 deles tiveram que ser hospitalizados - cinco em estado crítico -, segundo os últimos dados da agência estatal "Xinhua".No entanto, as equipes de resgate ainda estão tentando determinar qual era o número exato de operários na ponte na hora do acidente.


A ponte cruzava o rio Tuo, no distrito de Fenghuang.A região turística é famosa por suas belas montanhas e suas casas tradicionais. O acidente interrompeu a estrada que liga o distrito com o de Daxing.Com 328 metros de comprimento e 42 metros de altura, a ponte estava quase concluída e deveria ser inaugurada no fim do mês. Os operários estavam retirando os andaimes, segundo a "Xinhua".A empresa Fengda estava encarregada do projeto no oeste da província, através do consórcio Road and Bridge Construction (RBC), com um investimento de US$ 1,6 milhão.A Polícia está investigando o mestre de obras da RBC, Xia Toujia, e o supervisor do projeto, Jiang Ping.


As autoridades abriram uma investigação para esclarecer as causas do acidente.Os trabalhadores que construíam a ponte eram, em sua maioria, imigrantes vindos da zona rural, segundo a emissora "CFTV".Trata-se da segunda queda de uma ponte ocorrida no país este verão (no hemisfério norte).Em junho, nove pessoas morreram na província de Cantão, no sul da China, depois que um navio carregado de areia se chocou contra um pilar de uma ponte, derrubando um trecho de 150 metros pelo qual passavam vários veículos e pedestres.Na ocasião, inicialmente a imprensa chinesa afirmou que não havia vítimas mortais. Mas, nos dias seguintes, as equipes de resgate encontraram nove corpos.Após o acidente, o Ministério de Comunicações anunciou um plano para inspecionar e reparar mais de 6 mil pontes.


Segundo o relatório anual de manutenção de estradas elaborado pelo ministério, no final de 2006 havia na China cerca de 6.300 pontes "em estado perigoso, com alguns componentes estruturais importantes seriamente danificados".O plano do ministério é que todas as pontes das estradas nacionais e provinciais e da maioria das estradas dos distritos se tornem seguras até 2010.Segundo o jornal estatal "China Daily", entre os anos 2000 e 2005 o Governo gastou US$ 1,97 bilhão na reparação de 7 mil pontes.Também implantou um sistema de manutenção que obriga as empresas de construção de estradas a contratar engenheiros para controlar as suas estruturas.De acordo com o secretário-geral do Instituto de Pontes e Engenharia Estrutural, Xiao Rucheng, "no passado, desenhar uma ponte exigia pelo menos um ano, mas agora costuma levar um mês". A rapidez nas obras resulta em defeitos no desenho e na construção."Uma vez vi que pediam a operários que unissem duas seções de uma ponte durante um tufão. As fendas podem aparecer com facilidade se o cimento for despejado com um clima assim", explicou o especialista.


Xiao acrescentou que um dos problemas das pontes construídas nos últimos 20 anos é que os engenheiros não previram o grande tráfego atual. As estruturas não estão preparadas para suportar tanto peso.Na China há mais de 500 mil pontes, a maioria construída nos últimos 20 anos.